Nanoscribe基于雙光子聚合技術的3D打印技術為構建具有自由形狀和復雜特征的零件提供了極大的自由度,可直接根據CAD模型制造成品。若以傳統方式來制造這些設計復雜的零件,則顯得非常不切實際,甚至根本不可能完成。增材制造技術制造的零件往往更輕、更高效且能夠更好地發揮工作性能。然而,這并不是說這種靈活性能夠讓我們隨心所欲地設計任何想要的形狀,至少在成本的約束下,我們也不可能做到這一點,海南TPP增材制造。Nanoscribe所具備的納米標記系統基于雙光子吸收,這是一種分子被激發到更高能態的過程。為了使用雙光子工藝制造3D物體,海南TPP增材制造,使用含有單體和雙光子活性光引發劑的凝膠作為原料,海南TPP增材制造。將激光照射到光敏材料上以形成納米尺寸的3D打印物體,其中吸收的光的強度比較高。 Nanoscribe在中國的子公司納糯三維科技(上海)有限公司帶您了解增材制造的工藝過程前處理。海南TPP增材制造

談到增材制造技術(俗稱3D打印技術)估計很多人并不陌生,但是說到增材制造技術的應用,可能大部分人還只停在以下兩個階段:1)原型制造,即通過樹脂、塑料等非金屬材料打印的概念原型與功能原型。其中概念原型用于展示產品設計的整體概念、立體形態和布局安排,功能原型則用于優化產品的設計,促進新產品的開發,如檢查產品的結構設計,模擬裝配、裝配干涉檢驗等。2)間接制造,即通過3D打印技術完成工、模具制造,再采用3D打印工模具進行零件的制造。湖北微光學增材制造微納光刻Nanoscribe在中國的子公司納糯三維科技(上海)有限公司帶您了解金屬材料增材制造技術。

Nanoscribe是一家德國雙光子增材制造系統制造商,2019年6月25日,南極熊從外媒獲悉,該公司近日推出了一款新型的機器QuantumX。該新的系統使用雙光子光刻技術制造納米尺寸的折射和衍射微光學元件,其尺寸可小至200微米。根據Nanoscribe的聯合創始人兼CSOMichaelThiel博士的說法,“Beer's定律對當今的無掩模光刻設備施加了強大的限制,QuantumX采用雙光子灰度光刻技術,克服了這些限制,提供了前所未有的設計自由度和易用性,我們的客戶正在微加工的前沿工作。“Nanoscribe成立于卡爾斯魯厄理工學院,現在在上海設有子公司,在美國設有辦事處。該公司在財務和技術上獲得了蔡司的大力支持,蔡司是德國歷史非常悠久,規模比較大的光學系統制造商之一。納米標記系統基于雙光子吸收,這是一種分子被激發到更高能態的過程。為了使用雙光子工藝制造3D物體,使用含有單體和雙光子活性光引發劑的凝膠作為原料。將激光照射到光敏材料上以形成納米尺寸的3D打印物體,其中吸收的光的強度比較高。PhotonicProfessionalGT是Nanoscribe此前推出的一款產品,在科學研究中得到了廣的應用,并在哈佛大學納米系統中心,加州理工學院,倫敦帝國理工學院,蘇黎世聯邦理工大學和慶應義塾大學使用。
Nanoscribe作為一家納米,微米和中尺度高精度結構增材制造專家,一直致力于開發和生產和無掩模光刻系統,以及自研發的打印材料和特定應用不同解決方案。在全球頂端大學和創新科技企業的中,有超過2,500多名用戶在使用我們突破性的3D微納加工技術和定制應用解決方案。Nanoscribe成立于2007年,是卡爾斯魯厄理工學院(KIT)的衍生公司。Nanoscribe憑借其過硬的技術背景和市場敏銳度奠定了其市場優先領導地位,并以高標準來要求自己以滿足客戶的需求。Nanoscribe將在未來在基于雙光子聚合技術的3D微納加工系統基礎上進一步擴大產品組合實現多樣化,以滿足不用客戶群的需求。Nanoscribe在中國的子公司納糯三維科技(上海)有限公司歡迎你一起探討增材制造技術的現狀和未來趨勢。

如今,金屬增材制造正在急劇地改變產品制造的方式。傳統的制造是將完整的金屬材料用數控機床來進行減材加工,后續得到實體零件,其過程去除了大量的材料;而金屬增材制造是使用三維數字模型直接打印產品的一種生產方式,將金屬粉末材料,按照燒結、熔融、噴射等方式逐層堆積,制造出實體物品。增材制造與傳統制造有著巨大的不同,簡化后的生產方式突破傳統結構設計的限制,將生產復雜結構與優化產品性能成為可能。這提升了廠家的生產彈性、縮短生產周期,并將真正的創新思維帶入產品之中。有了增材制造技術,過去只存在于想象中、被視為不可能生產的各種產品,終于能夠被實現。根據ASTM標準 ,增材制造又稱為3D打印或快速成型。北京微納光刻增材制造設備
3D打印(3D Printing),又稱作增材制造,是一種用digital file (數字文件) 生成一個三維物體的過程。海南TPP增材制造
3D打印(3D Printing),又稱作Additive Manufacturing (增材制造),是一種用digital file (數字文件) 生成一個三維物體的過程。在3D打印的過程中,一層層的材料被逐次疊加起來,直到形成后期的物體形態。每一層可以看作這個物體的一個很薄的橫截面,而每層的厚度則決定了打印的精度,層的厚度越小,打印的精度越高,打印出來的實體與digitalmodel(數字模型)本身越接近。3D打印在創建物體形態上有極大的自由度,幾乎不受形態復雜度限制,這也是3D打印相比于傳統制造方法(主要是SubtractiveManufacturing即減材制造)的一個重要優勢。使用傳統減材制造方法時,部件的復雜度直接影響流程的復雜度,復雜的形態會使開模難度加大、使用工具更加復雜、成本大幅上漲。然而對于3D打印技術來說,由于其獨特的分層成形原理,簡單的形態和復雜的形態幾乎可以一視同仁。譬如,外表閉合一體而內部鏤空的形態,或者無接縫的鏈接結構(interlockingstructures),無法通過傳統制造工藝獲得,只能通過AdditiveManufacturing建造。海南TPP增材制造