在數(shù)據(jù)中心高速光互連架構中,多芯MT-FA組件憑借其高密度集成與低損耗傳輸特性,已成為支撐400G/800G乃至1.6T光模塊的重要器件。該組件通過精密研磨工藝將光纖陣列端面加工為特定角度,結合低損耗MT插芯實現(xiàn)多路光信號的并行傳輸。以42.5°全反射設計為例,其通過端面全反射結構將光信號高效耦合至PD陣列,完成光電轉換的同時明顯提升通道密度。在800G光模塊中,12芯MT-FA組件可實現(xiàn)單模塊12通道并行傳輸,較傳統(tǒng)方案提升3倍連接密度,滿足AI訓練集群對海量數(shù)據(jù)實時交互的需求。其插入損耗≤0.35dB、回波損耗≥60dB的技術指標,確保了光信號在長距離、高負荷運行環(huán)境下的穩(wěn)定性,有效降低系統(tǒng)誤碼率。此外,多芯MT-FA支持8°至45°多角度定制,可適配硅光模塊、CPO共封裝光學等新型架構,為數(shù)據(jù)中心向1.6T速率演進提供關鍵技術支撐。多芯MT-FA光組件的通道均勻性優(yōu)化,使多路信號傳輸時延差小于5ps。西安多芯MT-FA光組件在云計算中的應用

多芯MT-FA光組件的封裝工藝是光通信領域實現(xiàn)高密度、高速率光信號傳輸?shù)闹匾夹g環(huán)節(jié),其重要在于通過精密結構設計與微納級加工控制,實現(xiàn)多芯光纖與光電器件的高效耦合。封裝過程以MT插芯為重要載體,該結構采用雙通道設計:前端光纖包層通道內徑與光纖直徑嚴格匹配,通過V形槽基板的微米級定位精度,確保每根光纖的軸向偏差控制在±0.5μm以內;后端涂覆層通道則采用彈性壓接結構,既保護光纖脆弱部分,又通過機械加壓實現(xiàn)穩(wěn)固固定。在光纖陣列組裝階段,需先對裸光纖進行預處理,去除涂覆層后置于V形槽中,通過自動化加壓裝置施加均勻壓力,使光纖與基片形成剛性連接。隨后采用低溫固化膠水進行粘合,膠層厚度需控制在5-10μm范圍內,避免因膠量過多導致光學性能劣化。研磨拋光工序是決定耦合效率的關鍵,需將光纖端面研磨至42.5°反射角,表面粗糙度Ra值小于0.1μm,同時控制光纖凸出量在0.2±0.05mm范圍內,以滿足垂直耦合的光學要求。蘭州多芯MT-FA光組件在存儲設備中的應用海底通信系統(tǒng)建設里,多芯 MT-FA 光組件耐受惡劣環(huán)境,確保鏈路暢通。

從技術演進來看,MTferrule的制造工藝直接決定了多芯MT-FA光組件的性能上限。其生產流程涉及高精度注塑成型、金屬導向銷定位、端面研磨拋光等多道工序,對設備精度和工藝控制要求極高。例如,V形槽基板的切割誤差需控制在±0.5μm以內,光纖凸出量需精確至0.2mm,以確保與光電器件的垂直耦合效率。此外,MTferrule的導細孔設計(通常采用金屬材質)通過機械定位實現(xiàn)多芯光纖的精確對準,解決了傳統(tǒng)單芯連接器難以實現(xiàn)的并行傳輸問題。隨著AI算力需求的爆發(fā)式增長,MT-FA組件正從100G/400G向800G/1.6T速率升級,其重要挑戰(zhàn)在于如何平衡高密度與低損耗:一方面需通過優(yōu)化光纖陣列排布和端面角度減少耦合損耗;另一方面需提升材料耐溫性和機械穩(wěn)定性,以適應數(shù)據(jù)中心長期高負荷運行環(huán)境。未來,隨著硅光集成技術的成熟,MTferrule有望與CPO架構深度融合,進一步推動光模塊向小型化、低功耗方向演進。
多芯MT-FA的技術特性與云計算的彈性擴展需求形成深度契合。在超大規(guī)模數(shù)據(jù)中心部署中,MT-FA組件通過支持CXP、QSFP-DD等高速封裝形式,實現(xiàn)了光模塊與交換機、GPU加速卡的無縫對接。其微米級V槽精度(±0.3μm公差)確保了多芯光纖的嚴格對齊,配合模場直徑轉換技術,可將硅光芯片的微小模場(3-5μm)與標準單模光纖(9μm)進行低損耗耦合,插損波動控制在±0.05dB范圍內。這種高一致性特性在云計算的虛擬化環(huán)境中尤為重要——當數(shù)千個虛擬機共享物理服務器資源時,MT-FA組件能保障每個虛擬通道獲得穩(wěn)定的傳輸帶寬,避免因光信號衰減導致的計算任務延遲。實驗數(shù)據(jù)顯示,采用24芯MT-FA的1.6T光模塊在40U機柜內可替代12個傳統(tǒng)模塊,空間利用率提升4倍,同時通過集成化設計將功耗降低35%,為云計算運營商每年節(jié)省數(shù)百萬美元的運營成本。隨著800G/1.6T光模塊在2025年后成為主流,多芯MT-FA組件正從數(shù)據(jù)中心內部連接向城域網(wǎng)、廣域網(wǎng)延伸,推動云計算架構向全光化、智能化方向演進。多芯MT-FA光組件的波長適配性,覆蓋850nm至1650nm全光譜范圍。

多芯MT-FA高密度光連接器作為光通信領域的關鍵組件,憑借其高集成度與低損耗特性,已成為支撐超高速數(shù)據(jù)傳輸?shù)闹匾夹g。該連接器通過精密研磨工藝將光纖陣列端面加工為特定角度(如42.5°),配合低損耗MT插芯與微米級V槽定位技術,實現(xiàn)多芯光纖的并行排列與高效耦合。在400G/800G甚至1.6T光模塊中,單根MT-FA連接器可集成8至32芯光纖,通道間距壓縮至0.25mm,較傳統(tǒng)方案提升3倍以上空間利用率。其插入損耗控制在≤0.35dB(單模)與≤0.50dB(多模),回波損耗分別達到≥60dB(APC端面)與≥20dB(PC端面),明顯降低信號衰減與反射干擾,滿足AI算力集群對數(shù)據(jù)完整性的嚴苛要求。例如,在100GPSM4光模塊中,MT-FA通過42.5°反射鏡實現(xiàn)光路90°轉折,使收發(fā)端與芯片間距縮短至5mm以內,大幅提升板級互連密度。多芯MT-FA光組件的防塵結構設計,通過IP67防護等級認證。多芯MT-FA高密度光連接器生產廠
電商平臺數(shù)據(jù)中心里,多芯 MT-FA 光組件支撐訂單等數(shù)據(jù)快速處理傳輸。西安多芯MT-FA光組件在云計算中的應用
在AI算力需求指數(shù)級增長的背景下,多芯MT-FA光模塊已成為高速光通信系統(tǒng)的重要組件。其通過精密研磨工藝將光纖陣列端面加工為特定角度(如42.5°全反射面),配合低損耗MT插芯實現(xiàn)多通道光信號的并行傳輸。以800G/1.6T光模塊為例,單模塊需集成12-48個光纖通道,傳統(tǒng)單芯連接方案因體積大、功耗高難以滿足高密度部署需求,而多芯MT-FA通過陣列化設計將通道間距壓縮至0.25mm以下,在保持插入損耗≤0.35dB、回波損耗≥60dB的同時,使光模塊體積縮小40%以上。這種結構優(yōu)勢使其在數(shù)據(jù)中心內部互聯(lián)場景中,可支持每機柜部署密度提升3倍,單鏈路傳輸帶寬突破1.6Tbps,有效解決了AI訓練集群中海量參數(shù)同步的時延問題。西安多芯MT-FA光組件在云計算中的應用