PCIe4.0標準在時鐘架構上除了支持傳統的共參考時鐘(Common Refclk,CC)模式以 外,還可以允許芯片支持參考時鐘(Independent Refclk,IR)模式,以提供更多的連接靈 活性。在CC時鐘模式下,主板會給插卡提供一個100MHz的參考時鐘(Refclk),插卡用這 個時鐘作為接收端PLL和CDR電路的參考。這個參考時鐘可以在主機打開擴頻時鐘 (SSC)時控制收發端的時鐘偏差,同時由于有一部分數據線相對于參考時鐘的抖動可以互 相抵消,所以對于參考時鐘的抖動要求可以稍寬松一些PCIE3.0和PCIE4.0應該如何選擇?中國澳門PCI-E測試檢修

關于各測試項目的具體描述如下:·項目2.1Add-inCardTransmitterSignalQuality:驗證插卡發送信號質量,針對2.5Gbps、5Gbps、8Gbps、16Gbps速率。·項目2.2Add-inCardTransmitterPulseWidthJitterTestat16GT/s:驗證插卡發送信號中的脈沖寬度抖動,針對16Gbps速率。·項目2.3Add-inCardTransmitterPresetTest:驗證插卡發送信號的Preset值是否正確,針對8Gbps和16Gbps速率。·項目2.4AddinCardTransmitterInitialTXEQTest:驗證插卡能根據鏈路命令設置成正確的初始Prest值,針對8Gbps和16Gbps速率。·項目2.5Add-inCardTransmitterLinkEqualizationResponseTest:驗證插卡對于鏈路協商的響應時間,針對8Gbps和16Gbps速率。中國澳門PCI-E測試檢修PCI-e的軟件編程接口;

隨著數據速率的提高,芯片中的預加重和均衡功能也越來越復雜。比如在PCle 的1代和2代中使用了簡單的去加重(De-emphasis)技術,即信號的發射端(TX)在發送信 號時對跳變比特(信號中的高頻成分)加大幅度發送,這樣可以部分補償傳輸線路對高 頻成分的衰減,從而得到比較好的眼圖。在1代中采用了-3.5dB的去加重,2代中采用了 -3.5dB和-6dB的去加重。對于3代和4代技術來說,由于信號速率更高,需要采用更加 復雜的去加重技術,因此除了跳變比特比非跳變比特幅度增大發送以外,在跳變比特的前 1個比特也要增大幅度發送,這個增大的幅度通常叫作Preshoot。為了應對復雜的鏈路環境,
在測試通道數方面,傳統上PCIe的主板測試采用了雙口(Dual-Port)測試方法,即需要 把被測的一條通道和參考時鐘RefClk同時接入示波器測試。由于測試通道和RefClk都是 差分通道,所以在用電纜直接連接測試時需要用到4個示波器通道(雖然理論上也可以用2個 差分探頭實現連接,但是由于會引入額外的噪聲,所以直接電纜連接是常用的方法),這種 方法的優點是可以比較方便地計算數據通道相對于RefClk的抖動。但在PCIe5.0中,對于 主板的測試也采用了類似于插卡測試的單口(Single-Port)方法,即只把被測數據通道接入 示波器測試,這樣信號質量測試中只需要占用2個示波器通道。圖4.23分別是PCIe5.0主 板和插卡信號質量測試組網圖,芯片封裝和一部分PCB走線造成的損耗都是通過PCI-SIG為什么PCI-E3.0的夾具和PCI-E2.0的不一樣?

(9)PCle4.0上電階段的鏈路協商過程會先協商到8Gbps,成功后再協商到16Gbps;(10)PCIe4.0中除了支持傳統的收發端共參考時鐘模式,還提供了收發端采用參考時鐘模式的支持。通過各種信號處理技術的結合,PCIe組織總算實現了在兼容現有的FR-4板材和接插 件的基礎上,每一代更新都提供比前代高一倍的有效數據傳輸速率。但同時收/發芯片會變 得更加復雜,系統設計的難度也更大。如何保證PCIe總線工作的可靠性和很好的兼容性, 就成為設計和測試人員面臨的嚴峻挑戰。PCI-e體系的拓撲結構;山西PCI-E測試服務熱線
被測件發不出標準的PCI-E的一致性測試碼型,為什么?中國澳門PCI-E測試檢修
校準完成后,在進行正式測試前,很重要的一點就是要能夠設置被測件進入環回模式。 雖然調試時也可能會借助芯片廠商提供的工具設置環回,但標準的測試方法還是要基于鏈 路協商和通信進行被測件環回模式的設置。傳統的誤碼儀不具有對于PCle協議理解的功 能,只能盲發訓練序列,這樣的缺點是由于沒有經過正常的鏈路協商,可能會無法把被測件 設置成正確的狀態。現在一些新型的誤碼儀平臺已經集成了PCIe的鏈路協商功能,能夠 真正和被測件進行訓練序列的溝通,除了可以有效地把被測件設置成正確的環回狀態,還可 以和對端被測設備進行預加重和均衡的鏈路溝通。中國澳門PCI-E測試檢修