研究蛋白質-蛋白質、蛋白質-核酸等生物分子間的相互作用,對于理解生命過程至關重要。均相化學發光技術,特別是Alpha技術,為PPI研究提供了強大的定量平臺。通過將相互作用的雙方分別與供體珠和受體珠偶聯,可以直接在溶液生理條件下測量結合信號。該方法不僅可以驗證互作,還能通過競爭實驗測定小分子抑制劑的IC50,或通過滴定實驗估算結合常數(KD)。相較于傳統的表面等離子共振(SPR)或等溫滴定量熱法(ITC),均相化學發光方法通量更高,樣品消耗更少,更適合于大規模篩選和初步的相互作用表征。浦光生物均相化學發光新技術!福建技術升級均相發光與普通發光的區別

時間分辨熒光共振能量轉移(TR-FRET)是FRET技術的升級版,它結合了FRET的高空間分辨率和時間分辨熒光(TRF)的長壽命信號優勢。TR-FRET使用鑭系元素螯合物(如銪Eu3+、鋱Tb3+)作為供體。這類供體具有熒光壽命極長(微秒至毫秒級)的特點。檢測時,使用脈沖光源激發后,在短暫延遲后(例如50-100微秒)再測量熒光,此時普通背景熒光(壽命只納秒級)已完全衰減,而長壽命的供體熒光及其通過FRET轉移產生的受體熒光(通常使用別藻藍蛋白APC或d2等作為受體)則被特異性檢測到。這一設計幾乎完全消除了樣本基質、微孔板及試劑本身的短壽命背景熒光干擾,將檢測的信噪比和靈敏度提升至新的高度,特別適用于復雜生物樣本(如血清、細胞裂解液)的直接檢測。北京浦光生物均相發光應用領域告別磁珠反應,均相化學發光,操作更簡便,實驗效率大幅提升!

在免疫學和學研究,常需同時監測多個細胞因子或信號蛋白的磷酸化狀態。基于微珠的多重均相發光檢測系統(如Luminex xMAP技術結合化學發光檢測)應運而生。該系統使用不同顏色編碼的微球作為固相載體,每種微球包被一種特異性捕獲抗體。樣本中的多種靶標被各自捕獲后,再用生物素化檢測抗體和鏈霉親和素-熒光/發光報告分子進行檢測。雖然微球是固相,但整個反應在懸浮液中進行,讀數前無需洗滌,本質上也是一種高效的“液相”或“懸浮芯片”式多重均相檢測。
研究蛋白-蛋白相互作用(PPI)對于理解細胞信號網絡至關重要。傳統的酵母雙雜交、免疫共沉淀等方法操作復雜、通量低。以Alpha技術為表示的均相發光方法徹底改變了這一局面。將靶蛋白A與供體珠偶聯,互作蛋白B與受體珠偶聯。當A和B在溶液中相互作用時,拉近兩珠產生信號。該方法可在純化蛋白、細胞裂解液甚至活細胞培養基中進行,不只能驗證已知互作,更能用于高通量篩選破壞或促進特定PPI的小分子化合物。其均相特性使得可以實時監測互作動力學,研究互作強度,為藥物發現和基礎生物學提供了強大工具。均相化學發光在 POCT(即時檢驗)領域的應用現狀?

在重癥炎癥(如膿毒癥)、CAR-T診療或某些自身免疫病中,細胞因子風暴是危及生命的狀態,需要快速監測多種炎癥因子。基于微球陣列的均相化學發光多重檢測技術,能夠從單份微量血清或血漿樣本中,同時定量檢測IL-6、IL-1β、TNF-α、IFN-γ等十幾種關鍵細胞因子的濃度。這種高通量、多參數的分析能力,使得臨床醫生或研究人員能夠多方面、快速地掌握患者的炎癥風暴譜系,評估嚴重程度,并監測診療干預(如抗細胞因子抗體)的效果,為精細免疫調控提供依據。均相化學發光與熒光免疫技術相比,優勢在哪?廣西浦光生物均相發光與普通發光的區別
浦光生物均相化學發光技術在免疫檢測中的應用有哪些創新點?福建技術升級均相發光與普通發光的區別
Alpha技術,又稱均相臨近化學發光檢測,是均相發光領域的一項變革性突破。該技術基于兩種特殊的微珠:供體珠(Donor Bead)和受體珠(Acceptor Bead)。供體珠內包裹了光敏劑,當被680nm激光激發時,可將周圍環境中的氧氣轉化為高能態的單線態氧。單線態氧在溶液中擴散距離極短(約200納米)。只有當供體珠和受體珠因同時結合到一個目標分子(如抗原、蛋白互作對)上而彼此靠近時,單線態氧才能有效擴散至受體珠,觸發其內部的化學發光劑產生520-620nm的強光。若兩珠未靠近,單線態氧則淬滅在溶劑中。Alpha技術結合了臨近誘導的高特異性和化學發光的高靈敏度,且不受樣本顏色淬滅影響,在蛋白-蛋白相互作用、激酶活性、GPCR功能等研究中成為金標準。福建技術升級均相發光與普通發光的區別